2023 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Biological Characterization and Imaging (20)

 

4-dimensional ultrasound assessment of cardiac remodeling during pregnancy and postpartum lactation 

Description:
While the effect of lactation on the health of neonates is commonly studied, its consequence on maternal health is still ambiguous. Previous work has suggested that complications of pregnancy are often associated with increased risk of cardiovascular disease, further complicating the long-lasting effects of pregnancy. Conversely, other research suggests that longer lactation periods may decrease the risk of cardiovascular diseases. Thus, we aim here to understand how pregnancy and lactation affect cardiovascular remodeling and if these changes could be attributed to altered risk of cardiovascular diseases. This project aims to better understand the cardiac remodeling process throughout normal pregnancy and lactation during the post-partum period. Four-dimensional ultrasound scans of the heart are acquired at several timepoints throughout gestation and post-partum. These scans will be used to quantify left ventricular geometry and function in normal pregnancies and during lactation. Image analysis of the ultrasound images will be performed using a custom MATLAB GUI. We will compare the postpartum cardiovascular remodeling that occurs in lactating and non-lactating mice. Analysis of the cardiac scans will provide information relating to the left ventricle volume, ejection fraction, and LV wall thickness. These metrics will provide conclusions and recommendations for further research in this area.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging
Preferred major(s):
  • Biomedical Engineering
  • Computer Engineering
School/Dept.:
BME
Professor:
Craig Goergen

More information: https://engineering.purdue.edu/cvirl

 

Adhesives at the Beach 

Description:
The oceans are home to a diverse collection of animals producing intriguing materials. Mussels, barnacles, oysters, starfish, and kelp are examples of the organisms generating adhesive matrices for affixing themselves to the sea floor. Our laboratory is characterizing these biological materials, designing synthetic polymer mimics, and developing applications. Synthetic mimics of these bioadhesives begin with the chemistry learned from characterization studies and incorporate the findings into bulk polymers. For example, we are mimicking the cross-linking of DOPA-containing adhesive proteins by placing monomers with pendant catechols into various polymer backbones. Adhesion strengths of these new polymers can rival that of the cyanoacrylate “super glues.” Underwater bonding is also appreciable. Future efforts are planned in two different areas: A) Using biobased and biomimetic adhesives as the basis for making new plastic materials, such as systems like carbon fiber reinforced polymers, but with all components sourced sustainably. B) Developing new adhesive systems that function completely underwater.
Research categories:
Biological Characterization and Imaging, Composite Materials and Alloys, Material Processing and Characterization, Medical Science and Technology
Preferred major(s):
  • No Major Restriction
School/Dept.:
Chemistry
Professor:
Jonathan Wilker
 

Air Purification with Photocatalysis and Acoustic Filtering 

Description:
There are two related projects, both focused on making air safe, including from bioaersols like COVID.

1) Photocatalysis for Air Purification: Photocatalysis is one method for helping degrade harmful airborne particles, like COVID-19, which our lab is investigating in a partnership with a start-up company. Undergraduates interested in designing experimental setups and microbiological experiments are well-suited for this project. Candidates with experience in culturing microorganism/relevant wet lab experience is preferred.

2) Acoustic removal of aerosols: Sound waves can interact with small particles like aerosols, and be used to manipulate their motion. In this project, we aim to invent the first system that can make air safe with sound waves.
Research categories:
Biological Characterization and Imaging, Biological Simulation and Technology, Energy and Environment, Engineering the Built Environment, Fluid Modelling and Simulation, Material Modeling and Simulation, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • No Major Restriction
Desired experience:
All applicants should have an interest in photochemistry, microbiology, aerosol sciences, and experimental research. In addition to the required skills mentioned in the points above, applicants with additional experience with some of the following programs are preferred: Python and Adobe Illustrator. What experience will you gain? • Hands on research experience and potential co-authorship in high impact journals • Application of engineering fundamentals to important societal problems • Research credit hours (and potential opportunities for financial compensation in the summer) • Networking opportunities with academic and industry leaders
School/Dept.:
Mechanical Engineering
Professor:
David Warsinger

More information: www.warsinger.com

 

Biofilms in Hydroponics Systems 

Description:
Controlled environment agriculture methods like hydroponics allow for the growth of crops indoors, providing a stable and controlled conditions for year-round food production, even in urban areas. Despite the high level of control, the growth of microbes can be difficult to control and threatens crop viability. Biofilms develop on system surfaces, and can harbor pathogens harmful to plant or human health.

In this project, biofilm development will be investigated in piped systems using flow cytommetry, imaging, and molecular biology methods. Students will grow plants with hydroponics systems and investigate the factors that control biofilm growth. Since biofilms can develop similarly in any piped system, students will also operate a variety of piped systems with controlled conditions. Students will learn a variety of environmental characterization methods and design and develop controlled experiments.
Research categories:
Biological Characterization and Imaging, Cellular Biology, Ecology and Sustainability, Engineering the Built Environment
Preferred major(s):
  • No Major Restriction
Desired experience:
While no background is required, a student with biology and/or biology lab experience and background is preferred.
School/Dept.:
Environmental and Ecological Engineering
Professor:
Caitlin Proctor
 

Bone Fracture and Microscale Deformation Processes 

Description:
We seek to modify the deformation characteristics of bone through a pharmacological treatment. This project would demonstrate such a concept using animal bone. Treated and untreated bone will be made available for the interrogation of bone by x-rays. Students will be engaged in the data interpretation of x-ray scattering experiments on bone, not subjected to mechanical loads or subjected to mechanical loads.
Research categories:
Biological Characterization and Imaging, Biological Simulation and Technology, Material Modeling and Simulation, Material Processing and Characterization, Other
Desired experience:
Materials Characterization, X-ray techniques; Experience in lab work
School/Dept.:
School of Mechanical Engineering
Professor:
Thomas Siegmund

More information: https://engineering.purdue.edu/MYMECH

 

Cellular basis of meristem development in Ceratopteris gametophytes 

Description:
Students will perform microscopic studies to understand meristem cell division and growth in Ceratotperis gametophytes in response to phytohormones, environmental signals, and mechanical perturbations. This study will help reveal the cellular basis of stem cell proliferation and meristem development in plants.
Research categories:
Biological Characterization and Imaging, Cellular Biology
Preferred major(s):
  • Plant Science
  • Biology
  • Cell Molecular and Developmental Biology
  • Biochemistry
School/Dept.:
Botany and Plant Pathology
Professor:
Yun Zhou
 

Characterizing Infant Exposure to Chemical Contaminants in Indoor Dust 

Description:
Our project is funded by the U.S. Environmental Protection Agency (EPA) and involves an interdisciplinary collaboration between engineers, chemists, and psychologists at Purdue University and New York University (NYU). We will elucidate determinants of indoor dust ingestion in 6- to 24-month-old infants (age range for major postural and locomotor milestones). Specific objectives are to test: (1) whether the frequency and characteristics of indoor dust and non-dust mouthing events change with age and motor development stage for different micro-environments; (2) how home characteristics and demographic factors affect indoor dust mass loading and dust toxicant concentration; (3) how dust transfer between surfaces is influenced by dust properties, surface features, and contact dynamics; and (4) contributions of developmental, behavioral, and socio-environmental factors to dust and toxicant-resolved dust ingestion rates. In addition, the project will (5) create a shared corpus of video, dust, toxicant, and ingestion rate data to increase scientific transparency and speed progress through data reuse by the broader exposure science community.

Our transdisciplinary work will involve: (1) parent report questionnaires and detailed video coding of home observations of infant mouthing and hand-to-floor/object behaviors; (2) physical and chemical analyses of indoor dust collected through home visits and a citizen-science campaign; (3) surface-to-surface dust transfer experiments with a robotic platform; (4) dust mass balance modeling to determine distributions in and determinants of dust and toxicant-resolved dust ingestion rates; and (5) open sharing of curated research videos and processed data in the Databrary digital library and a public website with geographic and behavioral information for participating families.

The project will provide improved estimates of indoor dust ingestion rates in pre-sitting to independently walking infants and characterize inter-individual variability based on infant age, developmental stage, home environment, and parent behaviors. Dust transport experiments and modeling will provide new mechanistic insights into the factors that affect the migration of dust from the floor to mouthed objects to an infant’s mouth. The shared corpus will enable data reuse to inform future research on how dust ingestion contributes to infants’ total exposure to environmental toxicants.

U.S. EPA project overview: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/11194
Research categories:
Biological Characterization and Imaging, Ecology and Sustainability, Engineering the Built Environment, Environmental Characterization, Human Factors
Preferred major(s):
  • No Major Restriction
Desired experience:
We are seeking students passionate about studying environmental contaminants and infant exposure to chemicals in the indoor environment. Preferred skills: experience with MATLAB, Python, or R. Coursework: environmental science and chemistry, microbiology, physics, thermodynamics, heat/mass transfer, fluid mechanics, developmental psychology.
School/Dept.:
Lyles School of Civil Engineering
Professor:
Brandon Boor

More information: www.brandonboor.com

 

Development of protein biomarkers from biofluids for non-invasive early detection and monitoring of cancers 

Description:
Currently, most cancer diagnosis procedures include a diagnostic imaging process, such as a CT scan followed by a tumor biopsy. Tissue biopsy is an invasive and painful procedure and may pose health risks for patients such as those with kidney diseases. Liquid biopsy, the ability to detect and monitor disease through biofluids, is highly promising and may replace tissue biopsy with an immense potential public health impact. The use of liquid biopsy offers numerous advantages in the clinical setting, including its non-invasive nature, a suitable sample source for longitudinal disease monitoring, a better screenshot of tumor heterogeneity, and lower costs compared to tissue biopsy. Increasing evidence indicates an important cellular function of exosomes and other extracellular vesicle (EV) particles in tumor biology and metastasis, presenting them as intriguing sources for biomarker discovery and disease diagnosis. However, the vast majority of current exosome/EV studies focus on their miRNAs, with few studies on functional proteins such as phosphorylated proteins. As phosphorylation is a major player in cancer and other disease progression, EV phosphoproteins are expected to become actively pursued targets for in vitro disease diagnosis. We were the first group to demonstrate that many phosphoproteins in exosomes and microvesicles could be extracted from a small volume of biofluids, identified by high-resolution mass spectrometry (MS), and verified as potential cancer markers (Chen et al PNAS 2017). In this project, we will focus on non-invasive cancer detection by coupling CT scans with liquid biopsy to eliminate the need for surgery by more than 50%. The IU Urology team led by kidney surgeon Dr. Boris and Dr. Tao’s lab at Purdue University collaborated with prior funding have established specific biosignatures found in low- and high-grade clear cell RCC. An undergraduate student may be involved in the protein sample preparation from biofluids and tissues, maintenance of equipment, and/or bioinformatics analysis.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Deep Learning, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Computer Science
  • Biochemistry
  • Biomedical Engineering
  • Chemistry
  • Biology
Desired experience:
Certain coding skills and biostatistics are highly desirable but not required.
School/Dept.:
Biochemistry AND Chemistry
Professor:
W. Andy Tao

More information: http://www.protaomics.org/

 

Drinking Water Microbiology 

Description:
Although engineers add disinfectant residual to drinking water to prevent microbial growth, as water travels many miles through distribution pipes this disinfectant is lost. Microbial growth is often unavoidable - including the growth of opportunistic pathogens that can cause disease in immunocompromised populations. The three opportunistic pathogens (OPs) recognized by the scientific community to be of major concern are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. These bacteria often grow in biofilm, a microbiological layer formed along the inner surface of pipes.
This project will investigate the microbial diversity of drinking water bacteria through a variety of molecular biology methods. Opportunistic pathogens will be quantified through qPCR methods within samples from rural drinking water and controlled experiments on Purdue's campus. Additionally, students will help with more advanced molecular methods including sequencing and bioinformatics. Results from this project will provide insight into the dynamics of pathogens within drinking water.
Research categories:
Biological Characterization and Imaging, Cellular Biology, Engineering the Built Environment, Environmental Characterization
Preferred major(s):
  • No Major Restriction
Desired experience:
While no background is required, a student with biology and/or biology lab experience and background is preferred.
School/Dept.:
Environmental and Ecological Engineering
Professor:
Caitlin Proctor
 

EMBRIO Institute - (Core Imaging) Development and application of Atomic Force Microscopy (AFM) and imaging tools towards the measurement of oocyte mechanical behavior. 

Description:
This project is the development and application of AFM and imaging tools towards the measurement of oocyte mechanical behavior. The student will learn fundamental biology of oocyte fertilization and applications of AFM towards measurement of cell biomechanics. Towards the scientific objectives of determining how calcium signaling and cytoskeletal contraction interact to generate the whole-cell membrane block response, the development of AFM as a precise indentation and measurement tool for assaying oocyte stiffness is necessary. Working with research personnel from the research groups and Thrusts led by Chan (Biomedical Engineering) and Evans (Biology), the undergraduate researcher will prepare cells for experiments, aid in AFM experiments, and analyze AFM data to determine oocyte response to indentation.

Expected learning outcomes the student will gain include: (1) understand fundamental biology of oocyte membrane block, (2) understand engineering mechanics concepts of atomic force microscopy, and (3) apply AFM force spectroscopy to oocyte biomechanics.
Research categories:
Biological Characterization and Imaging
Preferred major(s):
  • No Major Restriction
School/Dept.:
Weldon School of Biomedical Engineering
Professor:
Deva Chan

More information: https://www.purdue.edu/research/embrio/research/index.php

 

EMBRIO Institute - High resolution imaging (project 1) and computational modeling (project 2) to test decoding of Ca2+-flux frequency by CaM and CaMKII role in dynamic actin polymerization and dendritic spine morphology.  

Description:
Project 1: This summer research project will use high resolution imaging test the hypothesis that decoding of Ca2+-flux frequency by CaM and CaMKII plays a major role in dynamic actin polymerization and dendritic spine morphology. Student will learn basic laboratory skills, primary cell culture, immunohistochemistry, confocal imaging and image analysis.

Project 2: This summer research project will use computational modeling of Ca2+/Calmodulin and CaMKII interactions in dendritic spines to test the hypothesis that decoding of Ca2+-flux frequency by CaM and CaMKII plays a major role in dynamic actin polymerization and dendritic spine morphology. Computational tools that will be used include ordinary and partial differential equations and machine learning techniques to rapid explore model parameter space.

Research Question Overview:
Neuronal synapses are tightly regulated intercellular junctions that rapidly convey information from an upstream pre-synaptic neuron to a downstream post-synaptic neuron. Dynamic strengthening or weakening of synaptic connective strength, known as synaptic plasticity, is a critical feature of neuronal function. The direction of synaptic plasticity (increased connective strength (LTP) versus decreased connective strength (LTD)) depends on the timing of action potentials (AP), which is translated into frequency signals of Ca2+ ion flux through NMDA
receptors (NMDAR) located on dendritic spines (100-500nm mushroom-like protrusions that form the post-synapse).

The timing and direction of synaptic plasticity is also exquisitely regulated by dynamic organization and spatial localization of synaptic adhesion molecules, signaling receptors, ion channels, and the intracellular cytoskeleton within spines. However, it not clear to how these electrical, biochemical, and mechanical cues are integrated to produce robust, repeatable, and highly dynamic synaptic plasticity that lasts over the lifetime of a neuron (decades). Our recent work has shown that competition for CaM-binding can influence the Ca2+ frequency-dependence of protein activation and downstream signaling. In particular, the highly expressed Ca2+/calmodulin-dependent kinase II (CaMKII) plays a key role in synaptic plasticity via two
important aspects of its function: (1) CaMKII is highly involved in Ca2+-dependent signal transduction via phosphorylation of a number of downstream proteins including ion channels, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and transcription factors, and (2) CaMKII acts as a multivalent scaffold that binds multiple proteins simultaneously and localizes them to post-synaptic spines, including both filamentous and monomeric actin and may regulate actin polymerization in the spine.

Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Biological Simulation and Technology, Biotechnology Data Insights, Cellular Biology
Preferred major(s):
  • No Major Restriction
School/Dept.:
Weldon School of Biomedical Engineering
Professor:
Tamara Kinzer-Ursem

More information: https://www.purdue.edu/research/embrio/research/index.php

 

EMBRIO Institute - How Reactive Oxygen Species (ROS) and actin cross talk during zebrafish wound healing. 

Description:
As part of the EMBRIO Institute, our lab is working on multicellular to organism-wide coordination and emergence research to determine how tissue-wide organization of connected epithelial sheets emerge. Specifically this project will focus on learning how ROS and actin cross talk during zebrafish wound healing.

The student will learn how to handle fish, conduct high-resolution imaging, and engage in basic data analysis, with opportunities to move into modeling of the data.
Research categories:
Biological Characterization and Imaging
Preferred major(s):
  • No Major Restriction
Desired experience:
Prefer student from an area of biology that has high degree of interest in learning research techniques.
School/Dept.:
Biology
Professor:
Qing Deng

More information: https://www.purdue.edu/research/embrio/research/index.php

 

EMBRIO Institute - Mechanistic models of Calcium signaling and its downstream effects 

Description:
The student will work on existing computational models (agent-based models or partial differential equation models), making updates toward adapting existing models to new biological systems. Student will be co-mentored by Elsje Pienaar, BME Dept.

Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Biological Simulation and Technology
Preferred major(s):
  • No Major Restriction
School/Dept.:
Mechanical Engineering
Professor:
Adrian Buganza Tepole
 

Engineer a synthetic neuron using a bottom-up approach 

Description:
Neurons convert biochemical information (through binding of a neurotransmitter) to electrical signal (via action potential) and back to biochemical signal (through the release of neurotransmitters). These distinct and separable processes can be reconstituted in a synthetic neuron by using natural and engineered proteins, and a synthetic neuron platform can be used to understand the rules governing the emergence of the present morphology of a neuron and the architecture of the neuronal system. This project thus aims to construct a synthetic neuron with a modular design and a programmable synthetic neuronal network capable of recapitulating basic functions of a natural neuronal system (e.g., action potential, synaptic communication, and basic computation) and with a long-term vision of incorporating more advanced computation and potentiation.
Research categories:
Biological Characterization and Imaging, Cellular Biology, Genetics, Medical Science and Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
GPA > 3.5, BME, ABE and CHE preferred
School/Dept.:
Davidson School of Chemical Engineering
Professor:
Chongli Yuan

More information: https://cyuangroup.com/

 

Evaluation of Motor Learning in Response to a Wearable Passive Feedback System  

Description:
This project involves the analysis of motion capture data and the development of human motor learning metrics to evaluate a wearable system developed by a company sponsor. Specifically, the undergraduate role is to assist in data collection and analysis. The student must take ethics courses and training to be approved for limited participation in human research and be comfortable interacting with healthy human subjects.

Project is co-advised by Dr Laura Blumenschein and Deva Chan
Research categories:
Biological Characterization and Imaging, Human Factors, Learning and Evaluation, Medical Science and Technology, Other
Preferred major(s):
  • Biomedical Engineering
  • Mechanical Engineering
  • Kinesiology
  • Health Science PreProfessional
  • Health and Disease
  • Occupational Health Science
  • Rehabilitation Engineering
  • Pre-physical Therapy
  • Applied Exercise and Health (Pre)
Desired experience:
Human subjects, physiology, data analysis, statistics, motor learning
School/Dept.:
Mechanical Engineering
Professor:
Laura Blumenschein

More information: https://lhblumen.wixsite.com/website-1

 

Mass spectrometry of biomolecules and nanoclusters 

Description:
We are using mass spectrometry to study the localization of lipids, drugs, and proteins in biological tissues and to prepare novel functional interfaces using well-defined polyatomic ions. The student will work with a graduate student mentor to either perform nanocluster synthesis and characterization using mass spectrometry and electrochemical measurements or to develop new analytical approaches for quantitative analysis of biomolecules in biological samples. We are also developing computational approaches for connecting mass spectrometry imaging data with biochemical pathways. In both projects, the student will be trained to operate state-of-the-art mass spectrometers and perform independent data acquisition and analysis. The student will also work with scientific literature to obtain a broader understanding of the field.
Research categories:
Biological Characterization and Imaging, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • No Major Restriction
Desired experience:
general chemistry, calculus, analytical or physical chemistry
School/Dept.:
Chemistry
Professor:
Julia Laskin

More information: https://www.chem.purdue.edu/jlaskin/

 

Molecular microscopy to inform the design of medications 

Description:
As illustrated with the COVID vaccines, storage and stability of medications can limit widespread availability. We are developing innovative chemical imaging tools with ultrafast pulsed lasers capable of mapping transformations within medical formulations to model and inform stability and bioavailability. Depending on the interests of the students, project scope can range from: i) bench-science in sample preparation and characterization, ii) instrument design and optical path alignment, iii) data acquisition and image analysis algorithm development, iv) partnership with collaborators in the pharmaceutical industry. We have a vibrant and diverse cohort of current researchers dedicated to fostering a supportive and collaborative research environment for all.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Material Processing and Characterization
Preferred major(s):
  • No Major Restriction
School/Dept.:
Chemistry
Professor:
Garth Simpson

More information: http://www.chem.purdue.edu/simpson/

 

Optimization of magnetically responsive membranes for tissue testing. Collaborative project: Adrian Buganza Tepole (PI), Andres Arrieta (PI), Craig Goergen (PI) 

Description:
There is a need for testing tissues in vivo to enable the development of better diagnostic tools and treatments. Actuating on tissues under homeostatic conditions (i.e., under biologically functional conditions) is challenging due to the complex boundary conditions introduced by any device interacting with the tissue. Therefore, biological tissue testing is mostly conducted ex-vivo, implying the loss of homeostasis and capturing of less relevant material properties. An alternative approach is to develop membranes responsive to remote stimulus such as magnetic fields.
This project aims to determine the microstructure design of polymer membranes with magnetically responsive particles to actuate on biological tissues under biologically relevant conditions. Specifically, this implies optimizing the material microstructure by orienting magnetically-responsive particles across the cross-section of the membrane.

Specific tasks & deliverables
1. To familiarize with the fabrication process of polymeric membranes embedding magnetically responsive particles.
2. To fabricate and conduct mechanical tests of magnetically responsive membranes.
3. To test the adhesion properties of the developed membranes to animal skin.
4. To conduct actuation tests of membrane+skin (bilayer) patches under magnetic fields as a function of particle orientation.
5. Documentation of the fabrication process, adhesion tests, and magnetic actuation results. Production of a final report, compatible with further presentation as a poster or student paper.

Special project outcomes
1. Familiarization with fabrication of magnetically-responsive materials.
2. Replicate material testing protocols for the adhesion and in-plane stretching response of polymeric membranes.
3. Familiarization with magnetic actuation of bilayer membranes.
4. Familiarization with testing of biological tissues.

Research categories:
Biological Characterization and Imaging, Fabrication and Robotics, Material Processing and Characterization, Medical Science and Technology
Preferred major(s):
  • Biomedical Engineering
  • Mechanical Engineering
  • Materials Engineering
Desired experience:
Desirable experience: Material characterization, prior experimental work on polymers
School/Dept.:
Mechanical Engineering
Professor:
Adrian Buganza Tepole

More information: https://engineering.purdue.edu/ProgrammableStructures/

 

Super-Resolution Optical Imaging with Single Photon Counting and Optomechanics with Nanostructured Membranes 

Description:
Two projects are available. One involves the investigation of enhancing optical imaging resolution using single photon counting techniques. Conventional optical imaging has a hard limit on its spatial resolution, to about one half of the wavelength, and many situations can benefit from higher resolution. In addition, it is challenging to image through scattering media. By way of example, being able to sense with light deeper in the brain would be of enormous benefit in neuroscience. The statistics of photons emitted by or transmitted through an object contain valuable information about the object which could be used to enhance image resolution and possibly see through substantial background scatter. Experiments will be conducted using laser light and with a set of single photon avalanche detectors (SPADs) to measure photon correlations in time, over wavevector (direction), and between detectors in various imaging configurations. Results from these experiments will be used to assess the effectiveness of various techniques for enhancing spatial resolution in imaging applications. This work has a diverse set of potential applications including biological imaging, sensing defects in semiconductors, and imaging through fog. The other project relates to experimental work and the modeling of optical forces on structured membranes induced by a laser. The mechanical motion of a thin membrane deflected by laser light will be used to determine the membrane properties from experimental and simulated data. This will allow extraction of the mechanical material properties and more generally the validation of a theory for optomechanics that can then be used in design. The nascent field of optomechanics offers enormous impact scope, including remote actuation and propulsion, of importance in fields as diverse and molecular biology, communication, and transport. This project relates to attaining the underpinnings to move along such paths in engineering, as well as the basic physics of optical forces in material at small length scales.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Biological Simulation and Technology, Composite Materials and Alloys, Deep Learning, Material Processing and Characterization, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Electrical Engineering
  • Mechanical Engineering
  • Physics
  • Biomedical Engineering
Desired experience:
Students with an interest in experimental or modeling work and some background in electromagnetics would be a good fit for this project. The undergraduate student will work with graduate students to perform experiments in an optics laboratory, modeling, data analysis using MATLAB or python, and review relevant literature.
School/Dept.:
Electrical Engineering
Professor:
Kevin Webb
 

Vaginal Microbiome Regulation of Progesterone Signaling 

Description:
The human Microbiome is a critical regulator of health and disease. Vaginal microbiome dysfunction has been implicated in several female reproductive tract conditions, but a precise understanding of the mechanisms by which the vaginal microbiome regulates human health are poorly understood. The objective of this project is to analyze human Microbiome data from 400 women to identify microbes, metabolites, and bacterial functions that regulate the expression of the progesterone receptor.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging
Preferred major(s):
  • No Major Restriction
Desired experience:
Statistics, Modeling topics, Cellular biology
School/Dept.:
Weldon School of BME
Professor:
Douglas Brubaker